On the Maximum Likelihood Estimators for some Generalized Pareto-like Frequency Distribution

نویسندگان

چکیده مقاله:

Abstract. In this paper we consider some four-parametric, so-called Generalized Pareto-like Frequency Distribution, which have been constructed using stochastic Birth-Death Process in order to model phenomena arising in Bioinformatics (Astola and Danielian, 2007). As examples, two ”real data” sets on the number of proteins and number of residues for analyzing such distribution are given. The conditions of coincidence of solution for the system of Likelihood Equations with the Maximum Likelihood Estimators (MLE) for the parameters of this distribution are also investigated. In addition, we propose Accumulation Method as a recurrence method for approximate computation of the MLE of the parameters. Simulation studies are done.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maximum Likelihood-Like Estimators for the Gamma Distribution

It is well-known that maximum likelihood (ML) estimators of the two parameters in a Gamma distribution do not have closed forms. This poses difficulties in some applications such as real-time signal processing using low-grade processors. The Gamma distribution is a special case of a generalized Gamma distribution. Surprisingly, two out of the three likelihood equations of the generalized Gamma ...

متن کامل

Some Estimators for the Pareto Distribution

We derive some shrinkage test-estimators and the Bayes estimators for the shape parameter of a Pareto distribution under the general entropy loss (GEL) function. The properties have been studied in terms of relative efficiency. The choices of shrinkage factor are also suggested.

متن کامل

Maximum Likelihood Estimation for Generalized Pareto Distribution under Progressive Censoring with Binomial Removals

The paper deals with the estimation problem for the generalized Pareto distribution based on progressive type-II censoring with random removals. The number of components removed at each failure time is assumed to follow a binomial distribution. Maximum likelihood estimators and the asymptotic variance-covariance matrix of the estimates are obtained. Finally, a numerical example is given to illu...

متن کامل

Bias - Corrected Maximum Likelihood Estimation of the Parameters of the Generalized Pareto Distribution

We derive analytic expressions for the biases, to O(n), of the maximum likelihood estimators of the parameters of the generalized Pareto distribution. Using these expressions to bias-correct the estimators in a selective manner is found to be extremely effective in terms of bias reduction, and can also result in a small reduction in relative mean squared error. In terms of remaining relative bi...

متن کامل

Generalized Empirical Likelihood Estimators

In an effort to improve the small sample properties of generalized method of moments (GMM) estimators, a number of alternative estimators have been suggested. These include empirical likelihood (EL), continuous updating, and exponential tilting estimators. We show that these estimators share a common structure, being members of a class of generalized empirical likelihood (GEL) estimators. We us...

متن کامل

Some Characterization Results on Generalized Pareto Distribution Based on Progressive Type-II Right Censoring

The progressive censoring scheme is a method of data collecting in reliability and life testing which has been of intensified interest in recent years. In the present paper, we prove some characterization results on generalized Pareto distribution based upon the independency and expected values of some functions of progressive type-II right censored order statistics.

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 12  شماره None

صفحات  211- 234

تاریخ انتشار 2013-10

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023